A Review of the Mechanical Properties and Durability of Ecological Concretes in a Cold Climate in Comparison to Standard Ordinary Portland Cement-Based Concrete

Author:

Kothari AnkitORCID,Habermehl-Cwirzen KarinORCID,Hedlund Hans,Cwirzen AndrzejORCID

Abstract

Most of the currently used concretes are based on ordinary Portland cement (OPC) which results in a high carbon dioxide footprint and thus has a negative environmental impact. Replacing OPCs, partially or fully by ecological binders, i.e., supplementary cementitious materials (SCMs) or alternative binders, aims to decrease the carbon dioxide footprint. Both solutions introduced a number of technological problems, including their performance, when exposed to low, subfreezing temperatures during casting operations and the hardening stage. This review indicates that the present knowledge enables the production of OPC-based concretes at temperatures as low as −10 °C, without the need of any additional measures such as, e.g., heating. Conversely, composite cements containing SCMs or alkali-activated binders (AACs) showed mixed performances, ranging from inferior to superior in comparison with OPC. Most concretes based on composite cements require pre/post heat curing or only a short exposure to sub-zero temperatures. At the same time, certain alkali-activated systems performed very well even at −20 °C without the need for additional curing. Chemical admixtures developed for OPC do not always perform well in other binder systems. This review showed that there is only a limited knowledge on how chemical admixtures work in ecological concretes at low temperatures and how to accelerate the hydration rate of composite cements containing high amounts of SCMs or AACs, when these are cured at subfreezing temperatures.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3