Real-Time Hybrid Simulation with Deep Learning Computational Substructures: System Validation Using Linear Specimens

Author:

Bas Elif Ecem,Moustafa Mohamed A.ORCID

Abstract

Hybrid simulation (HS) is an advanced simulation method that couples experimental testing and analytical modeling to better understand structural systems and individual components’ behavior under extreme events such as earthquakes. Conducting HS and real-time HS (RTHS) can be challenging with complex analytical substructures due to the nature of direct integration algorithms when the finite element method is employed. Thus, alternative methods such as machine learning (ML) models could help tackle these difficulties. This study aims to investigate the quality of the RTHS tests when a deep learning algorithm is used as a metamodel to represent the dynamic behavior of a nonlinear analytical substructure. The compact HS laboratory at the University of Nevada, Reno was utilized to conduct exclusive RTHS tests. Simulating a braced frame structure, the RTHS tests combined, for the first time, linear brace model specimens (physical substructure) along with nonlinear ML models for the frame (analytical substructure). Deep long short-term memory (Deep-LSTM) networks were employed and trained to develop the metamodels of the analytical substructure using the Python environment. The training dataset was obtained from pure analytical finite element simulations for the complete structure under earthquake excitation. The RTHS evaluations were first conducted for virtual RTHS tests, where substructuring was sought between the LSTM metamodel and virtual experimental substructure. To validate the proposed RTHS testing methodology and full system, several actual RTHS tests were conducted. The results from ML-based RTHS were evaluated for different ML models and compared against results from conventional RTHS with finite element models. The paper demonstrates the potential of conducting successful experimental RTHS using Deep-LSTM models, which could open the door for unparalleled new opportunities in structural systems design and assessment.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3