Abstract
In order to improve the static start-up problem of Savonius wind turbines, a Savonius wind turbine with a modified blade is proposed. It was obtained by twisting the half-cylindrical blades of the basic Savonius wind turbine by 70°. The aerodynamic performance of the wind turbine before and after the modification was compared. Firstly, the static torque coefficient of two wind turbines at different azimuth angles were obtained by means of three-dimensional numerical simulation. The static flow field around the wind turbine was analyzed. Then, the output power and speed characteristics of a spiral Savonius wind turbine under different incoming wind speeds were evaluated in the wind tunnel. The results show that, compared with the Savonius wind turbine with half-cylindrical blades, the spiral wind turbine could start at any azimuths in one rotation cycle. The reverse torque was eliminated. The static torque coefficient fluctuation range was reduced by 10%. The start-up performance was effectively improved. This investigation could provide guidance for the improvement of start-up characteristics of Savonius wind turbines.
Funder
‘Academic Backbone’ Project of Northeast Agricultural University
HeiLongjiang Postdoctoral Fund
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献