ERDERP: Entity and Relation Double Embedding on Relation Hyperplanes and Relation Projection Hyperplanes

Author:

Lin Lin,Liu Jie,Guo Feng,Tong Changsheng,Zu Lizheng,Guo Hao

Abstract

Since data are gradually enriched over time, knowledge graphs are inherently imperfect. Thus, knowledge graph completion is proposed to perfect knowledge graph by completing triples. Currently, a family of translation models has become the most effective method for knowledge graph completion. These translation models are modeled to solve the complexity and diversity of entities, such as one-to-many, many-to-one, and many-to-many, which ignores the diversity of relations themselves, such as multiple relations between a pair of entities. As a result, with current translation models, it is difficult to effectively extract the semantic information of entities and relations. To effectively extract the semantic information of the knowledge graph, this paper fundamentally analyzes the complex relationships of the knowledge graph. Then, considering the diversity of relations themselves, the complex relationships are refined as one-to-one-to-many, many-to-one-to-one, one-to-many-to-one, many-to-one-to-many, many-to-many-to-one, one-to-many-to-many, and many-to-many-to-many. By analyzing the complex relationships, a novel knowledge graph completion model, entity and relation double embedding on relation hyperplanes and relation projection hyperplanes (ERDERP), is proposed to extract the semantic information of entities and relations. First, ERDERP establishes a relation hyperplane for each relation and projects the relation embedding into the relation hyperplane. Thus, the semantic information of the relations is extracted effectively. Second, ERDERP establishes a relation projection hyperplane for each relation projection and projects entities into relation projection hyperplane. Thus, the semantic information of the entities is extracted effectively. Moreover, it is theoretically proved that ERDERP can solve antisymmetric problems. Finally, the proposed ERDERP are compared with several typical knowledge graph completion models. The experimental results show that ERDERP is significantly effective in link prediction, especially in relation prediction. For instance, on FB15k and FB15k-237, Hits@1 of ERDERP outperforms TransH at least 30%.

Funder

National Natural Science Foundation of China

Harbin Institute of Technology

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3