Nonlinear Mixed Convection in a Reactive Third-Grade Fluid Flow with Convective Wall Cooling and Variable Properties

Author:

Adesanya Samuel OlumideORCID,Yusuf Tunde AbdulkadirORCID,Lebelo Ramoshweu SolomonORCID

Abstract

Energy management and heat control whenever a reactive viscous fluid is the working medium has been one of the greatest challenges encountered by many in the field of chemical and industrial engineering. A mathematical approach to thedetermination of critical points beyond which the working environment becomes hazardous is presented in the present investigation together with the entropy generation analysis that guarantees the efficient management of expensive energy resources. In this regard, the nonlinear mixed convective flow behavior of a combustible third-grade fluid through a vertical channel with wall cooling by convection is investigated. The mathematical formulation captures the nonlinearities arising from second-order Boussinesq approximation and exponential dependence of internal heat generation, viscosity, and thermal conductivity on temperature. The resulting nonlinear boundary value problems were solved based on the spectral Chebyshev collocation method (SCCM) and validated with the shooting-Runge–Kutta method (RK4). The nonlinear effects on the flow velocity, temperature distribution, entropy generation, and Bejan heat irreversibility ratio are significant. Further analyses include the thermal stability of the fluid. Findings from the study revealed that flow, temperature, and entropy generation are enhanced byincreasing values of the Grashof number, the quadratic component of buoyancy, and the Frank-Kameneskii parameter, but are reducedbyincreasing the third-grade material parameter. Moreover, it was shown that increasing values of the third-grade parameter encourages the thermal stability of the flow, while increasing values of the linear and nonlinear buoyancy parameter destabilizes the flow. The present result is applicable to thick combustible polymers with increased molecular weight.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3