Statistical Inference for Competing Risks Model with Adaptive Progressively Type-II Censored Gompertz Life Data Using Industrial and Medical Applications

Author:

Almuqrin Muqrin A.ORCID,Salah Mukhtar M.ORCID,A. Ahmed Essam

Abstract

This study uses the adaptive Type-II progressively censored competing risks model to estimate the unknown parameters and the survival function of the Gompertz distribution. Where the lifetime for each failure is considered independent, and each follows a unique Gompertz distribution with different shape parameters. First, the Newton-Raphson method is used to derive the maximum likelihood estimators (MLEs), and the existence and uniqueness of the estimators are also demonstrated. We used the stochastic expectation maximization (SEM) method to construct MLEs for unknown parameters, which simplified and facilitated computation. Based on the asymptotic normality of the MLEs and SEM methods, we create the corresponding confidence intervals for unknown parameters, and the delta approach is utilized to obtain the interval estimation of the reliability function. Additionally, using two bootstrap techniques, the approximative interval estimators for all unknowns are created. Furthermore, we computed the Bayes estimates of unknown parameters as well as the survival function using the Markov chain Monte Carlo (MCMC) method in the presence of square error and LINEX loss functions. Finally, we look into two real data sets and create a simulation study to evaluate the efficacy of the established approaches.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference57 articles.

1. On the nature of the function expressive of the law of human mortality, and on a new model of determining the value of life contingencies;Philos. Trans. R. Soc. Lond.,1825

2. Knowledge Elicitation of Gompertz’ Law of Morality;Scand. Actuar. J.,2000

3. Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models;Chaos Solitons Fractals,2020

4. Jia, L., Li, K., Jiang, Y., Guo, X., and Zhao, T. (2020). Prediction and analysis of coronavirus disease 2019. arXiv.

5. Prediction of Progressive Censored Data from the Gompertz Model;Commun. Stat. Simul. Comput.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3