Uncertainty in the Calibration Transfer of Solar Irradiance Scale: From Absolute Cavity Radiometers to Standard Pyrheliometers

Author:

Balenzategui José LorenzoORCID,Molero María,Silva José PedroORCID,Fabero FernandoORCID,Cuenca José,Mejuto Eduardo,De Lucas JavierORCID

Abstract

In this work, the method for calculation of uncertainty of pyrheliometers’ responsivity during their outdoor calibration process in the laboratory is exposed. It is applied first for calibration of standard pyrheliometers by comparison to cavity radiometers, and after for calibration of an end-user pyrheliometer against that standard pyrheliometer. The dissemination of the WRR irradiance scale is illustrated in practice and the increasing uncertainty in the traceability chain is quantified. The way of getting traceability to both WRR scale and to SI units in the current situation, where the shift between these radiometric scales is pending to be solved, is also explained. However, the impact of this gap between scales seems to be more important for calibrations of reference Class A pyrheliometers than in the final determination of DNI irradiance, because in this case, the cumulative uncertainty is large enough as to not significantly be affected for the difference. The way to take into account different correction terms in the measurement model function, and how to compute the corresponding uncertainty, is explained too. The influence of temperature of some pyrheliometers during calibration process and the potential impact on the DNI irradiance calculated with these instruments is exemplified.

Funder

Ministry of Science and Innovation, Spain

Publisher

MDPI AG

Reference62 articles.

1. 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

2. The Global Observing System for Climate: Implementation Needs,2016

3. Systematic Observation Requirements for Satellite-Based Data Products for Climate,2011

4. A reevaluation of the solar constant based on a 42-year total solar irradiance time series and a reconciliation of spaceborne observations

5. A new, lower value of total solar irradiance: Evidence and climate significance

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3