A Quasi-Oppositional Heap-Based Optimization Technique for Power Flow Analysis by Considering Large Scale Photovoltaic Generator

Author:

Basetti Vedik,Rangarajan Shriram S.,Kumar Shiva Chandan,Verma Sumit,Collins Randolph E.,Senjyu TomonobuORCID

Abstract

Load flow analysis is an essential tool for the reliable planning and operation of interconnected power systems. The constant increase in power demand, apart from the increased intermittency in power generation due to renewable energy sources without proportionate augmentation in transmission system infrastructure, has driven the power systems to function nearer to their limits. Though the power flow (PF) solution may exist in such circumstances, the traditional Newton–Raphson based PF techniques may fail due to computational difficulties owing to the singularity of the Jacobian Matrix during critical conditions and faces difficulties in solving ill-conditioned systems. To address these problems and to assess the impact of large-scale photovoltaic generator (PVG) integration in power systems on power flow studies, a derivative-free quasi-oppositional heap-based optimization (HBO) (QOHBO) technique is proposed in the present paper. In the proposed approach, the concept of quasi-oppositional learning is applied to HBO to enhance the convergence speed. The efficacy and effectiveness of the proposed QOHBO-PF technique are verified by applying it to the standard IEEE and ill-conditioned systems. The robustness of the algorithm is validated under the maximum loadability limits and high R/X ratios, comparing the results with other well-known methods suggested in the literature. The results thus obtained show that the proposed QOHBO-PF technique has less computation time, further enhancement of reliability in the presence of PVG, and has the ability to provide multiple PF solutions that can be utilized for voltage stability analysis.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3