Application of Minimum Energy Effect to Numerical Reconstruction of Insolation Curves

Author:

Maga Dusan,Hrad JaromirORCID,Hajek Jiri,Othman AkeelORCID

Abstract

Increasing the efficiency of the solar energy harvesting system is an urgent need in light of the climate changes we live in nowadays. The most significant data to be processed in the photovoltaic harvesters are the curve of solar radiation intensity to achieve the maximum benefits of the solar incident light. This processing contains complicated procedures, and the used algorithms are also high computational power-consuming which makes using special software and high potential hardware essential requirements. An explanation of the Minimum Energy Effect method is presented in this article. Our proposed algorithm uses this method to provide a simple and high-accuracy mathematical tool for generating a simple alternative curve instead of the complicated original nonlinear curve of solar radiation intensity. The produced curve is suitable for further operations, such as derivatives, integrals, or even simple addition/subtraction. Our algorithm provides a gradual procedure to find an optimum solution of the equation system, unlike the iterative methods. In addition, the results of analyzing the effect of time-division density showed the relationship between the speed of solving the task and the accuracy of results.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3