Abstract
More multipurpose and convenient demand driven by Radio Frequency Identification (RFID) and intelligent packaging require flexible power sources. A VO2(B)/graphene (VO2(B)/GN) core-shell composite was successfully synthesized by the hydrothermal treatment with V2O5 and graphite. The as-obtained sample was characterized by XRD, FT-IR, SEM, TEM, and XPS measurements. In addition, the electrochemical properties of VO2(B)/GN were tested. Due to its great electrochemical performance and mechanical properties, graphene could increase the electrochemical performance and strengthen the structural stability of the material at the same time. With increasing loading amount of GN, the specific capacitance of VO2(B)/GN increased correspondingly. With 20% GN loading, the initial discharge specific capacity could reach 197 F g−1 at 0.5 A g−1, and 160 F g−1 at 1 A g−1 in 0.5 M Na2SO4 electrolyte, which is better than that of pure rod-like VO2(B). The capacitance of the VO2(B)/GN (20%) composite electrode retains 95.49% after 1000 cycles, which is higher than that of a pure VO2(B) electrode (85.43%), indicating that the VO2(B)/GN composite possesses better cycling stability. Moreover, a symmetrical solid-state supercapacitor (SCs) using VO2(B)/GN(20%) as the anode was assembled. Four printed SCs were connected in series to light up a 1.5 V red LED. This demonstrates its potential application in intelligent packaging to trace food safety.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献