Research on a Wind Turbine Gearbox Fault Diagnosis Method Using Singular Value Decomposition and Graph Fourier Transform

Author:

Chen Lan1,Zhang Xiangfeng1,Li Zhanxiang1,Jiang Hong1

Affiliation:

1. College of Intelligent Manufacturing and Industrial Modernization, Xinjiang University, Urumchi 830017, China

Abstract

Gearboxes operate in challenging environments, which leads to a heightened incidence of failures, and ambient noise further compromises the accuracy of fault diagnosis. To address this issue, we introduce a fault diagnosis method that employs singular value decomposition (SVD) and graph Fourier transform (GFT). Singular values, commonly employed in feature extraction and fault diagnosis, effectively encapsulate various fault states of mechanical equipment. However, prior methods neglect the inter-relationships among singular values, resulting in the loss of subtle fault information concealed within. To precisely and effectively extract subtle fault information from gear vibration signals, this study incorporates graph signal processing (GSP) technology. Following SVD of the original vibration signal, the method constructs a graph signal using singular values as inputs, enabling the capture of topological relationships among these values and the extraction of concealed fault information. Subsequently, the graph signal undergoes a transformation via GFT, facilitating the extraction of fault features from the graph spectral domain. Ultimately, by assessing the Mahalanobis distance between training and testing samples, distinct defect states are discerned and diagnosed. Experimental results on bearing and gear faults demonstrate that the proposed method exhibits enhanced robustness to noise, enabling accurate and effective diagnosis of gearbox faults in environments with substantial noise.

Funder

National Natural Science Foundation of China Project

Publisher

MDPI AG

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3