Optimal Design of Hybrid Renewable Systems, Including Grid, PV, Bio Generator, Diesel Generator, and Battery

Author:

He Meisheng1,Forootan Fard Habib2ORCID,Yahya Khalid3ORCID,Mohamed Mahmoud4ORCID,Alhamrouni Ibrahim5ORCID,Awalin Lilik Jamilatul6

Affiliation:

1. School of Traffic and Transportation Engineering, Hunan Institute of Traffic Engineering, Hengyang 421001, China

2. Department of Renewable Energies, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1417935840, Iran

3. Department of Electrical and Electronics Engineering, Nisantasi University, Istanbul 34467, Turkey

4. School of Engineering, Cardiff University, Cardiff CF24 3AA, UK

5. British Malaysian Institute, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia

6. Department of Electrical Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia

Abstract

Renewable energies are the best solutions to reduce CO2 emissions and supply reliable electricity. This study aims to find the best combination of various components considering economic, environmental, and technical factors together. The most important consideration factors are the limitation of using PV panels due to the land constraints and applying CO2 penalties where diesel generators and the grid are generating electricity. Findings show that providing electricity by hybrid systems would be useful even in the well-provided electricity regions by the grid with the least blackouts. The best combination of the proposed components, including PV, bio generator, diesel generator, batteries, and grid for the case study region where the load demand is 890 kWh/day and peak load is 167.2 kW, would be an off-grid hybrid system including PV, bio generator, diesel generator, and battery. The optimization results show an NPC (present value of the costs of investment and operation of a system over its lifetime) of $1.02 million and a COE (the average cost per capital of useful electricity produced by the system) of 0.188 $/kWh. Finally, due to the showing of the effect of different conditions on the optimization results and making the study usable for other circumstances of the case study region, some sensitivity analyses have been carried out.

Funder

Scientific Research Project of Hunan Provincial Department of Education

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3