Genome-Wide Association Study Reveals Genetic Architecture and Candidate Genes for Yield and Related Traits under Terminal Drought, Combined Heat and Drought in Tropical Maize Germplasm

Author:

Osuman Alimatu SadiaORCID,Badu-Apraku BaffourORCID,Karikari BenjaminORCID,Ifie Beatrice ElohorORCID,Tongoona Pangirayi,Danquah Eric YirenkyiORCID

Abstract

Maize (Zea mays L.) production is constrained by drought and heat stresses. The combination of these two stresses is likely to be more detrimental. To breed for maize cultivars tolerant of these stresses, 162 tropical maize inbred lines were evaluated under combined heat and drought (CHD) and terminal drought (TD) conditions. The mixed linear model was employed for the genome-wide association study using 7834 SNP markers and several phenotypic data including, days to 50% anthesis (AD) and silking (SD), husk cover (HUSKC), and grain yield (GY). In total, 66, 27, and 24 SNPs were associated with the traits evaluated under CHD, TD, and their combined effects, respectively. Of these, four single nucleotide polymorphism (SNP) markers (SNP_161703060 on Chr01, SNP_196800695 on Chr02, SNP_195454836 on Chr05, and SNP_51772182 on Chr07) had pleiotropic effects on both AD and SD under CHD conditions. Four SNPs (SNP_138825271 (Chr03), SNP_244895453 (Chr04), SNP_168561609 (Chr05), and SNP_62970998 (Chr06)) were associated with AD, SD, and HUSKC under TD. Twelve candidate genes containing phytohormone cis-acting regulating elements were implicated in the regulation of plant responses to multiple stress conditions including heat and drought. The SNPs and candidate genes identified in the study will provide invaluable information for breeding climate smart maize varieties under tropical conditions following validation of the SNP markers.

Funder

Bill and Melinder Gates Foundation

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3