Author:
Teng Xiaowen,Zhou Guangsheng,Wu Yuxuan,Huang Chenglong,Dong Wanjing,Xu Shengyong
Abstract
The three-dimensional reconstruction method using RGB-D camera has a good balance in hardware cost and point cloud quality. However, due to the limitation of inherent structure and imaging principle, the acquired point cloud has problems such as a lot of noise and difficult registration. This paper proposes a 3D reconstruction method using Azure Kinect to solve these inherent problems. Shoot color images, depth images and near-infrared images of the target from six perspectives by Azure Kinect sensor with black background. Multiply the binarization result of the 8-bit infrared image with the RGB-D image alignment result provided by Microsoft corporation, which can remove ghosting and most of the background noise. A neighborhood extreme filtering method is proposed to filter out the abrupt points in the depth image, by which the floating noise point and most of the outlier noise will be removed before generating the point cloud, and then using the pass-through filter eliminate rest of the outlier noise. An improved method based on the classic iterative closest point (ICP) algorithm is presented to merge multiple-views point clouds. By continuously reducing both the size of the down-sampling grid and the distance threshold between the corresponding points, the point clouds of each view are continuously registered three times, until get the integral color point cloud. Many experiments on rapeseed plants show that the success rate of cloud registration is 92.5% and the point cloud accuracy obtained by this method is 0.789 mm, the time consuming of a integral scanning is 302 s, and with a good color restoration. Compared with a laser scanner, the proposed method has considerable reconstruction accuracy and a significantly ahead of the reconstruction speed, but the hardware cost is much lower when building a automatic scanning system. This research shows a low-cost, high-precision 3D reconstruction technology, which has the potential to be widely used for non-destructive measurement of rapeseed and other crops phenotype.
Funder
National Key Research and Development Program of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献