Sieve: An Ensemble Algorithm Using Global Consensus for Binary Classification

Author:

Song Chongya,Pons Alexander,Yen Kang

Abstract

In the field of machine learning, an ensemble approach is often utilized as an effective means of improving on the accuracy of multiple weak base classifiers. A concern associated with these ensemble algorithms is that they can suffer from the Curse of Conflict, where a classifier’s true prediction is negated by another classifier’s false prediction during the consensus period. Another concern of the ensemble technique is that it cannot effectively mitigate the problem of Imbalanced Classification, where an ensemble classifier usually presents a similar magnitude of bias to the same class as its imbalanced base classifiers. We proposed an improved ensemble algorithm called “Sieve” that overcomes the aforementioned shortcomings through the establishment of the novel concept of Global Consensus. The proposed Sieve ensemble approach was benchmarked against various ensemble classifiers, and was trained using different ensemble algorithms with the same base classifiers. The results demonstrate that better accuracy and stability was achieved.

Publisher

MDPI AG

Reference32 articles.

1. Classification in high-dimensional feature spaces—Assessment using SVM, IVM and RVM with focus on simulated EnMAP data;Andreas;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2012

2. A divide-and-conquer-based ensemble classifier learning by means of many-objective optimization;Md;IEEE Trans. Evol. Comput.,2017

3. Wind power forecasting using neural network ensembles with feature selection;Song;IEEE Trans. Sustain. Energy,2015

4. Robust ensemble clustering using probability trajectories;Dong;IEEE Trans. Knowl. Data Eng.,2016

5. Locally weighted ensemble clustering;Dong;IEEE Trans. Cybern.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3