Deep Learning Based Wildfire Event Object Detection from 4K Aerial Images Acquired by UAS

Author:

Tang Ziyang,Liu Xiang,Chen HanlinORCID,Hupy Joseph,Yang BaijianORCID

Abstract

Unmanned Aerial Systems, hereafter referred to as UAS, are of great use in hazard events such as wildfire due to their ability to provide high-resolution video imagery over areas deemed too dangerous for manned aircraft and ground crews. This aerial perspective allows for identification of ground-based hazards such as spot fires and fire lines, and to communicate this information with fire fighting crews. Current technology relies on visual interpretation of UAS imagery, with little to no computer-assisted automatic detection. With the help of big labeled data and the significant increase of computing power, deep learning has seen great successes on object detection with fixed patterns, such as people and vehicles. However, little has been done for objects, such as spot fires, with amorphous and irregular shapes. Additional challenges arise when data are collected via UAS as high-resolution aerial images or videos; an ample solution must provide reasonable accuracy with low delays. In this paper, we examined 4K ( 3840 × 2160 ) videos collected by UAS from a controlled burn and created a set of labeled video sets to be shared for public use. We introduce a coarse-to-fine framework to auto-detect wildfires that are sparse, small, and irregularly-shaped. The coarse detector adaptively selects the sub-regions that are likely to contain the objects of interest while the fine detector passes only the details of the sub-regions, rather than the entire 4K region, for further scrutiny. The proposed two-phase learning therefore greatly reduced time overhead and is capable of maintaining high accuracy. Compared against the real-time one-stage object backbone of YoloV3, the proposed methods improved the mean average precision(mAP) from 0 . 29 to 0 . 67 , with an average inference speed of 7.44 frames per second. Limitations and future work are discussed with regard to the design and the experiment results.

Publisher

MDPI AG

Reference42 articles.

1. Fire Loss in the United States during 2017https://www.darley.com/documents/inside_darley/NFPA_2017_Fire_Loss_Report.pdf

2. Drone Efficacy Study (DES): Evaluating the Impact of Drones for Locating Lost Persons in Search and Rescue Events;Eyerman,2018

3. An Autoadaptive Edge-Detection Algorithm for Flame and Fire Image Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3