Probability Distribution and Characterization of Daily Precipitation Related to Tropical Cyclones over the Korean Peninsula

Author:

Alcantara Angelika L.,Ahn Kuk-HyunORCID

Abstract

Rainfall events are known to be driven by various synoptic disturbances or dominant processes in the atmosphere. In spite of the diverse atmospheric contributions, the assumption of homogeneity is commonly adopted when a hydrological frequency analysis is conducted. This study examines how the dominant processes, particularly the landfalling tropical cyclones (TCs) and non-TC events, have various effects to the characteristics of rainfall in South Korea. With rainfall data from the fifty-nine weather stations spread across the country, the multiple contributions of the TC and non-TC rainfall to the relative amount of rainfall, duration, intensity and maximum rainfall, on a seasonal and monthly scale, are first explored in this study. For the second objective, suitable probability distributions for the TC and non-TC time series are identified potentially for a synthetic analysis. Our results indicate that TCs cause a heterogeneous spatial distribution in the rainfall characteristics over the gauge networks particularly in the southern and eastern coastal areas. Some gauges in these areas attribute a significant portion of their amount and annual maximum rainfall to landfalling TCs. The results also show that the Pearson Type III distribution best represents the non-TC wet-day series, while the TC wet-day series can be represented by various distributions including the Weibull and Gamma distributions. From the analysis, we present how the characteristics of TCs differ from non-TCs with the emphasis on the need to consider their individual effects when conducting synthetic analyses.

Funder

Kongju National University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3