How Bark Beetle Attack Changes the Tensile and Compressive Strength of Spruce Wood (Picea abies (L.) H. Karst.)

Author:

Löwe RadimORCID,Sedlecký Miroslav,Sikora Adam,Prokůpková Anna,Modlinger RomanORCID,Novotný Karel,Turčáni Marek

Abstract

Since 2014, forestry in the Czech Republic has been significantly affected by a bark beetle outbreak. The volume of infested trees has exceeded processing capacity and dead standing spruce (Picea abies) remain in the forest stands, even for several years. What should be done with this bark beetle wood? Is it necessary to harvest it in order to preserve the basic mechanical and physical properties? Is it possible to store it under standard conditions, or what happens to it when it is “stored” upright in the forest? These are issues that interested forest owners when wood prices were falling to a minimum (i.e., in 2018–2019) but also today, when the prices of quality wood in Central European conditions are rising sharply. To answer these questions, we found out how some of the mechanical properties of wood change in dead, bark beetle-infested trees. Five groups of spruce wood were harvested. Each of these groups was left upright in the forest for a specified period of time after bark beetle infestation, and one group was classified as a reference group (uninfested trees). Subsequently, we discovered what changes occurred in tensile and compressive strength depending on the time left in the stand and the distance from the center of the trunk. When selecting samples, we eliminated differences between individual trees using a CT scanning technique, which allowed us to separate samples, especially with different widths of annual rings and other variations that were not caused by bark beetle. The results showed the effect of log age and radial position in the trunk on tensile and compressive strength. The values for tensile strength in 3-year infested trees decreased compared to uninfested trees by 14% (from 93.815 MPa to 80.709 MPa); the values for compressive strength then decreased between the same samples by up to 25.6% (from 46.144 MPa to 34.318 MPa). A significant decrease in values for compressive strength was observed in the edges of the trunks, with 44.332 MPa measured in uninfested trees and only 29.750 MPa in 3-year infested trees (a decrease of 32.9%). The results suggest that the use of central timber from bark beetle-infested trees without the presence of moulds and fungi should not be problematic for construction purposes.

Funder

Národní Agentura pro Zemědělský Výzkum

OP RDE

Publisher

MDPI AG

Subject

Forestry

Reference32 articles.

1. Bark beetle outbreak enhances biodiversity and foraging habitat of native bees in alpine landscapes of the southern Rocky Mountains

2. Cascading impacts of bark beetle‐caused tree mortality on coupled biogeophysical and biogeochemical processes

3. Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications

4. Living with Bark Beetles: Impacts, Outlook and Management Options. From Science to Policy 8;Hlásny,2019

5. CSO, Czech Statistical Office 2021 ‘Lesnictví—2020 (Forestry 2020)’ https://www.czso.cz/csu/czso/lesnictvi-2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3