A Driver Gaze Estimation Method Based on Deep Learning

Author:

Shah Sayyed Mudassar,Sun Zhaoyun,Zaman Khalid,Hussain Altaf,Shoaib Muhammad,Pei LiliORCID

Abstract

Car crashes are among the top ten leading causes of death; they could mainly be attributed to distracted drivers. An advanced driver-assistance technique (ADAT) is a procedure that can notify the driver about a dangerous scenario, reduce traffic crashes, and improve road safety. The main contribution of this work involved utilizing the driver’s attention to build an efficient ADAT. To obtain this “attention value”, the gaze tracking method is proposed. The gaze direction of the driver is critical toward understanding/discerning fatal distractions, pertaining to when it is obligatory to notify the driver about the risks on the road. A real-time gaze tracking system is proposed in this paper for the development of an ADAT that obtains and communicates the gaze information of the driver. The developed ADAT system detects various head poses of the driver and estimates eye gaze directions, which play important roles in assisting the driver and avoiding any unwanted circumstances. The first (and more significant) task in this research work involved the development of a benchmark image dataset consisting of head poses and horizontal and vertical direction gazes of the driver’s eyes. To detect the driver’s face accurately and efficiently, the You Only Look Once (YOLO-V4) face detector was used by modifying it with the Inception-v3 CNN model for robust feature learning and improved face detection. Finally, transfer learning in the InceptionResNet-v2 CNN model was performed, where the CNN was used as a classification model for head pose detection and eye gaze angle estimation; a regression layer to the InceptionResNet-v2 CNN was added instead of SoftMax and the classification output layer. The proposed model detects and estimates head pose directions and eye directions with higher accuracy. The average accuracy achieved by the head pose detection system was 91%; the model achieved a RMSE of 2.68 for vertical and 3.61 for horizontal eye gaze estimations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3