Soil Sampling Map Optimization with a Dual Deep Learning Framework

Author:

Pham Tan-Hanh1ORCID,Nguyen Kim-Doang1ORCID

Affiliation:

1. Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA

Abstract

Soil sampling constitutes a fundamental process in agriculture, enabling precise soil analysis and optimal fertilization. The automated selection of accurate soil sampling locations representative of a given field is critical for informed soil treatment decisions. This study leverages recent advancements in deep learning to develop efficient tools for generating soil sampling maps. We proposed two models, namely UDL and UFN, which are the results of innovations in machine learning architecture design and integration. The models are meticulously trained on a comprehensive soil sampling dataset collected from local farms in South Dakota. The data include five key attributes: aspect, flow accumulation, slope, normalized difference vegetation index, and yield. The inputs to the models consist of multispectral images, and the ground truths are highly unbalanced binary images. To address this challenge, we innovate a feature extraction technique to find patterns and characteristics from the data before using these refined features for further processing and generating soil sampling maps. Our approach is centered around building a refiner that extracts fine features and a selector that utilizes these features to produce prediction maps containing the selected optimal soil sampling locations. Our experimental results demonstrate the superiority of our tools compared to existing methods. During testing, our proposed models exhibit outstanding performance, achieving the highest mean Intersection over Union of 60.82% and mean Dice Coefficient of 73.74%. The research not only introduces an innovative tool for soil sampling but also lays the foundation for the integration of traditional and modern soil sampling methods. This work provides a promising solution for precision agriculture and soil management.

Funder

USDA National Institute of Food and Agriculture

Evans Library at Florida Institute of Technology

Publisher

MDPI AG

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3