Deep Learning-Based Location Spoofing Attack Detection and Time-of-Arrival Estimation through Power Received in IoT Networks

Author:

Aldosari Waleed1ORCID

Affiliation:

1. Department of Computer Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Abstract

In the context of the Internet of Things (IoT), location-based applications have introduced new challenges in terms of location spoofing. With an open and shared wireless medium, a malicious spoofer can impersonate active devices, gain access to the wireless channel, as well as emit or inject signals to mislead IoT nodes and compromise the detection of their location. To address the threat posed by malicious location spoofing attacks, we develop a neural network-based model with single access point (AP) detection capability. In this study, we propose a method for spoofing signal detection and localization by leveraging a feature extraction technique based on a single AP. A neural network model is used to detect the presence of a spoofed unmanned aerial vehicle (UAV) and estimate its time of arrival (ToA). We also introduce a centralized approach to data collection and localization. To evaluate the effectiveness of detection and ToA prediction, multi-layer perceptron (MLP) and long short-term memory (LSTM) neural network models are compared.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of Multiple Feature Selection Techniques for Machine Learning-Based Detection of IoT Attacks;Proceedings of the 19th International Conference on Availability, Reliability and Security;2024-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3