Static Concentrator Photovoltaics Module for Electric Vehicle Applications Based on Compound Parabolic Concentrator

Author:

Vu HoangORCID,Vu Ngoc Hai,Shin SeoyongORCID

Abstract

Electric vehicles (EVs) and photovoltaics (PVs) are new technologies that will play an important role in the transportation industry over the next decade. Using solar panels on the roofs of cars is one of the simplest ways to reduce fuel costs and increase the mobility of electric vehicles. Solar electric cars can be charged anywhere under the Sun without additional infrastructure, but the problem is the size of the solar panel is limited on the roof and the electricity conversion efficiency of the panel is only 15% to 20%. This means they will not provide significant electricity to EVs. An effective way to increase efficiency is to utilize multi-junction solar cells with concentrator photovoltaic (CPV) technology. The challenge is that the moving sun-tracking mechanism will reduce the stability of the vehicle structure. To solve this issue, in this research, we present a static concentrator photovoltaic system for electric vehicles. This structure is more stable and simpler than CPV systems using sun-tracking mechanisms and thus suitable for car roof application. The CPV system includes solid compound parabolic concentrators (CPCs), three-junction solar cells, and a crystalline Si cell panel. This structure allows for the manufacture of a static CPV with a geometrical concentration ratio of 4× for three-junction cells. The simulation results showed that the module can achieve 25% annual efficiency. Moreover, it can be flexible to meet the requirements of car roof application.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference20 articles.

1. Trends and Developments in Electric Vehicle Markets https://www.iea.org/reports/global-ev-outlook-2021/trends-and-developments-in-electric-vehicle-markets

2. Data-Driven Electricity Price Risk Assessment for Spot Market

3. Indirect Multi-Energy Transactions of Energy Internet With Deep Reinforcement Learning Approach

4. https://www.pv-magazine.com/2019/07/25/hyundai-enters-the-solar-car-race-with-new-sonata/

5. Average Car Travel Distance https://www.numbeo.com/traffic/country_result.jsp?country=South+Korea

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3