Parametric Study on Steel–Concrete Composite Beams Strengthened with Post-Tensioned CFRP Tendons

Author:

Elbelbisi Ahmed H.,El-Sisi Alaa A.ORCID,Hassan Hilal A.,Salim Hani A.,Shabaan Hesham F.

Abstract

A sustainable environment can be achieved by strengthening the existing building to avoid new construction and by replacing the construction materials with long-lasting sustainable materials such as a fiber-reinforced polymer (FRP). Using post-tensioned (PT) FRP systems has proven to be an effective technique in strengthening the structure and decreasing cracks and deformability. In this study, a 3-D finite element model was built to investigate the flexural behavior of composite beams strengthened with external PT FRP tendons. Limited research studied the use of FRP tendons to enhance the structural behavior of composite beams. This paper represents a comprehensive study of the effect of several parameters that control the design of the FRP tendons. Parameters such as PT level, tendon material, tendon length, degree of shear connection (DOSC), and tendon profile shape were considered under loading. The 3-D model’s correctness is validated using published experimental data. It was observed that of all FRP materials, carbon FRP is the best type for upgrading the beam strength, and it was recommended to use a 30 to 40% PT level. In addition, applying external PT over the full length of the beam increases the ultimate load capacity significantly. However, due to the difficulty of construction, it was recommended to use 90% of the beam span length since the difference in beam capacity does not exceed 5%. Finally, adding PT tendons with a trapezoidal and parabola profile to composite beams significantly increases the yield load and the beam capacity.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3