Potential Study of Solar Thermal Cooling in Sub-Mediterranean Climate

Author:

Jaradat MustafaORCID,Al-Addous MohammadORCID,Albatayneh AimanORCID,Dalala ZakariyaORCID,Barbana Nesrine

Abstract

Air conditioning is becoming increasingly important in the energy supply of buildings worldwide. There has been a dramatic increase in energy requirements for cooling buildings in the Middle East and North Africa (MENA) region. This is before taking the effects of climate change into account, which will also entail a sharp increase in cooling requirements. This paper presents the potential of using a solar thermal absorption cooling system in Sub-Mediterranean Climate. Four sites in Jordan are now equipped with water-lithium bromide (H₂O-LiBr) absorption chillers with a total nominal capacity of 530 kW. The focus of the paper was on the pilot system at the German Jordanian University (GJU) campus with a cooling capacity of 160 kW. The system was designed and integrated in order to support two existing conventional compression chillers with a nominal cooling capacity of 700 kW. The system was economically evaluated based on the observed cooling capacity results with a Coefficient of Performance (COP) equals 0.32, and compared with the values observed for a COP of 0.79 which is claimed by the manufacturer. Several techniques were implemented to evaluate the overall economic viability in-depth such as present worth value, internal rate of return, payback period, and levelized cost of electricity. The aforementioned economic studies showed that the absorption cooling system is deemed not feasible for the observed COP of 0.32 over a lifespan of 25 years. The net present value was equal to −137,684 JD and a payback period of 44 years which exceeds the expected lifespan of the project. Even for an optimal operation of COP = 0.79, the discounted payback period was equal to 23 years and the Levelized Cost of Electricity (LCOE) was equal to 0.65 JD/kWh. The survey shows that there are several weaknesses for applying solar thermal cooling in developing countries such as the high cost of these systems and, more significantly, the lack of experience for such systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3