Simulation of Fresnel Zone Plate Imaging Performance with Number of Zones

Author:

Li Ying,de La Rochefoucauld Ombeline,Zeitoun Philippe

Abstract

In recent years, integral imaging, a promising three-dimensional imaging technology, has attracted more and more attention for its broad applications in robotics, computational vision, and medical diagnostics. In the visible spectrum, an integral imaging system can be easily implemented by inserting a micro-lens array between a image formation optic and a pixelated detector. By using a micro-Fresnel Zone Plate (FZP) array instead of the refractive lens array, the integral imaging system can be applied in X-ray. Due to micro-scale dimensions of FZP in the array and current manufacturing techniques, the number of zones of FZP is limited. This may have an important impact on the FZP imaging performance. The paper introduces a simulation method based on the scalar diffraction theory. With the aid of this method, the effect of the number of zones on the FZP imaging performance is numerically investigated, especially the case of very small number of zones. Results of several simulation of FZP imaging are presented and show the image can be formed by a FZP with a number of zones as low as 5. The paper aims at offering a numerical approach in order to facilitate the design of FZP for integral imaging.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3