Analysis and Impact Evaluation of Missing Data Imputation in Day-ahead PV Generation Forecasting

Author:

Kim Taeyoung,Ko Woong,Kim Jinho

Abstract

Over the past decade, PV power plants have increasingly contributed to power generation. However, PV power generation widely varies due to environmental factors; thus, the accurate forecasting of PV generation becomes essential. Meanwhile, weather data for environmental factors include many missing values; for example, when we estimated the missing values in the precipitation data of the Korea Meteorological Agency, they amounted to ~16% from 2015–2016, and further, 19% of the weather data were missing for 2017. Such missing values deteriorate the PV power generation prediction performance, and they need to be eliminated by filling in other values. Here, we explore the impact of missing data imputation methods that can be used to replace these missing values. We apply four missing data imputation methods to the training data and test data of the prediction model based on support vector regression. When the k-nearest neighbors method is applied to the test data, the prediction performance yields results closest to those for the original data with no missing values, and the prediction model’s performance is stable even when the missing data rate increases. Therefore, we conclude that the most appropriate missing data imputation for application to PV forecasting is the KNN method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. Highlights of the REN21 Renewables 2018 Global Status Report in Perspective http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf

2. Trends 2016 in Photovoltaic Applications http://www.iea-pvps.org/fileadmin/dam/public/report/national/Trends_2016_-_mr.pdf

3. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining

4. An analysis of four missing data treatment methods for supervised learning

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3