Bending Force of Hot Rolled Strip Based on Improved Whale Optimization Algorithm and Twinning Support Vector Machine

Author:

Shi Chunyang,Wang Baoshuai,Chen Jin,Zhong Ruxin,Guo Shiyu,Sun Peng,Ma Zhicai

Abstract

Bending control is one of the main methods of shape control for the hot rolled plate. However, the existing bending force setting models based on traditional mathematical methods are complex and have low control accuracy, which leads to poor strip exit shapes. Aiming at the problem of complex bending force setting of the traditional algorithm, an improved whale swarm optimization algorithm and twin support vector machine-based bending force model for hot rolled strip steel (LWOA-TSVR) is proposed. Based on the hot rolling field production data of a steel plant, the research group established the bending force prediction model by using the nonlinear approximation ability of the twin support vector machine. The introduction of the Levy flight improvement algorithm improves the generalization ability, prediction accuracy, and convergence speed of the whale swarm optimization algorithm with the help of the convergence of coefficient vectors, solves the problem of a random selection of the parameters of the traditional whale swarm optimization algorithm and optimizes the ability of the whale swarm algorithm to jump out of the local optimum. Based on the actual rolling database, the hit rate of the proposed method reaches 91% (from −5 to 5 KN), which fully meets the requirements of the detection accuracy on the actual production line. The model is not only able to overcome the local search to obtain the global optimal solution, but also has the advantages of fast convergence and higher prediction accuracy. A comparison of the model with twin support vector machines and traditional whale swarm algorithms shows that the prediction accuracy is higher. The experimental results also show that this model has advantages over existing bending force prediction models in terms of improving the accuracy of the strip shape control and providing theoretical guidance for practical bending force settings.

Funder

This research is supported by the basic scientific research fund project of the Educational Department of Liaoning Province in 2021

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference18 articles.

1. Bending Force Preset Model Based on Optimal Algorithm;Hen;Appl. Mech. Mater.,2014

2. TWSVR: Regression via Twin Support Vector Machine;Reshma;Neural Netw.,2016

3. Cost Optimization in Neural Network using Whale Swarm Algorithm with Batched Gradient Descent Optimizer;Karthikeyan,2020

4. A Comparative Assessment of Six Machine Learning Models for Prediction of Bending Force in Hot Strip Rolling Process;Xu;Metals,2020

5. Multi-objective optimization of bending force preset in cold rolling;He;Eng. Comput.,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3