Microstructure Comparison for AlSn20Cu Antifriction Alloys Prepared by Semi-Continuous Casting, Semi-Solid Die Casting, and Spray Forming

Author:

Huang Shuhui,Zhu Baohong,Zhang Yongan,Liu Hongwei,Wu Shuaishuai,Xie Haofeng

Abstract

Antifriction alloys such as AlSn20Cu are key material options for sliding bearings used in machinery. Uniform distribution and a near-equiaxed granularity tin phase are generally considered to be ideal characteristics of an AlSn20Cu antifriction alloy, although these properties vary by fabrication method. In this study, to analyze the variation of the microstructure with the fabrication method, AlSn20Cu alloys are prepared by three methods: semi-continuous casting, semi-solid die casting, and spray forming. Bearing blanks are subsequently prepared from the fabricated alloys using different processes. Morphological information, such as the total area ratio and average particle diameter of the tin phase, are quantitatively characterized. For the tin phase of the AlSn20Cu alloy, the deformation and annealing involved in semi-continuous casting leads to a prolate particle shape. The average particle diameter of the tin phase is 12.6 µm, and the overall distribution state is related to the deformation direction. The tin phase of AlSn20Cu alloys prepared by semi-solid die casting presents both nearly spherical and strip shapes, with an average particle diameter of 9.6 µm. The tin phase of AlSn20Cu alloys prepared by spray forming and blocking hot extrusion presents a nearly equilateral shape, with an average particle diameter of 6.2 µm. These results indicate that, of the three preparation methods analyzed in this study, semi-solid die casting provides the shortest process flow time, whereas a finer and more uniform tin-phase structure may be obtained using the spray-forming process. The semi-solid die casting method presents the greatest potential for industrial application, and this method therefore presents a promising possibility for further optimization.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3