Affiliation:
1. Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), 2/4, pr. Akademicheskii, 634055 Tomsk, Russia
Abstract
Computer modeling of rubbing between two surfaces with microasperities capable of expanding or contracting under conditions of frictional heating (i.e., possessing either positive and negative coefficient of thermal expansion (CTE)) allowed for the identification of wear-and-friction regimes on model ceramic materials. Assuming that no adhesion was involved in the interaction between asperities, two wear regimes—i.e., wear-free and continuous wear—have been revealed in both materials as dependent on the applied normal stress level and sliding velocity. The effect of the normal load on wear rate was similar for both positive and negative thermal expansion ceramics. Sliding velocity has a qualitatively different effect on the wear of materials with either positive or negative thermal expansion. The results indicated that the feasibility of reconstructing wear maps was common for both positive and negative CTE ceramics in terms of dimensionless mechanical and thermophysical characteristics.
Funder
Government research assignment for ISPMS SB RAS
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献