A Simulation Study for the Design of Membrane Restrictor in an Opposed-Pad Hydrostatic Bearing to Achieve High Static Stiffness

Author:

Lai Ta-Hua,Lin Shih-Chieh

Abstract

The effects of a membrane restrictor’s design parameters on the performance of a hydrostatic opposed-pad bearing are presented in this article. Compared to the single-pad bearing, the opposed-pad bearing can perform much better in terms of static stiffness over a wider load range. It is also found that, for small bearing eccentricity, the optimal design restriction ratio of 0.25 still results in high bearing stiffness even if the dimensionless stiffness of membrane is not the optimal value of 1.33. Furthermore, decreasing the ratio of the upper effective area to the lower effective area generally increases the applicable working range of the bearing. Additionally, for high loading demands, the chance for further improvement of bearing performance by employing different design parameter for each pad is examined. Finally, a design procedure for designing the membrane restrictor for an opposed-pad bearing to achieve high static stiffness is given.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Reference15 articles.

1. Hydrostatic Lubrication;Bassani,1992

2. Hydrostatic, Aerostatic and Hybrid Bearing Design;Rowe,2012

3. Fundamentals of Fluid Film Lubrication;Hamrock,2004

4. The use of controlled restrictors for compensating hydrostatic bearings;Mohsin,1962

5. A new type of controlled restrictor (M.D.R.) for double film hydrostatic bearings and its application to high-precision machine tools;DeGast,1966

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3