Mechanical and Tribological Properties of Ni-B and Ni-B-W Coatings Prepared by Electroless Plating

Author:

Zhao Fan1,Hu Hong1,Yu Jiaxin1,Lai Jianping1,He Hongtu1ORCID,Zhang Yafeng1,Qi Huimin1,Wang Dongwei1

Affiliation:

1. Key Laboratory of Testing Technology for Manufacturing Process in Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

Abstract

Ni-B binary coating and Ni-B-W ternary coating were successfully prepared on titanium alloy (TC4) substrates by electroless plating to improve the hardness and wear resistance, followed by annealing treatment for better mechanical properties and tribological properties. The morphology, composition, microstructure, mechanical properties, and tribological behaviors of the coatings were characterized. Both as-plated coatings were amorphous, while the composition and morphology of the Ni-B-W coating differed from those of the Ni-B coating. Additionally, the Ni-B-W coating had better mechanical and tribological properties with a more considerable hardness (13.5 GPa), a minor friction coefficient (0.42), and a lower wear rate (0.10 × 10−7 cm3/(N·m)). After annealing, both coatings were crystalline. In parallel to the as-plated coating, the annealed coatings showed larger hardness values because of the formation of hard phases. Moreover, the crystalline grain of the coatings grew as the annealing temperature rose from 350 °C to 650 °C. Accordingly, the coatings showed a minor hardness value, a major friction coefficient, and severe wear under the same conditions. Above all, the Ni-B-W coating annealed at 350 °C showed the best performance, with an average grain size of 26.3 nm, hardness of 15.9 GPa, friction coefficient of 0.34, and wear rate of 0.09 × 10−7 cm3/(N·m).

Funder

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3