Evaluating the Tribological Behaviour in Cutting Operations Using a Modified Ball-on-Disc Open Tribotester

Author:

Nassef Belal G12ORCID,Pape Florian1ORCID,Poll Gerhard1ORCID,Schenzel Jan3ORCID,Bergmann Benjamin3ORCID,Denkena Berend3

Affiliation:

1. Institute of Machine Design and Tribology, Leibniz University of Hanover, 30823 Hannover, Germany

2. Production Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt

3. Institute for Production Engineering and Machine Tools, Leibniz University of Hanover, 30823 Hannover, Germany

Abstract

Predicting the tribological behaviour in the secondary shear zone in the metal-cutting processes is considered a significant challenge in contemporary research. This work investigated the frictional performance in the secondary shear zone of a planing process using a modified ball-on-disc open tribometer. The values of the coefficient of friction (COF) were tracked between an AISI4140 + QT disc (chip) and a cemented carbide ball (cutting tool) coated with TiAlN under three contact pressures of 0.5, 1, and 2 GPa at a range of sliding speeds starting from 0.2 m/s to 1.6 m/s. The tests were conducted under both dry and lubricated conditions using three commercial cutting fluids of CSF 35 straight oil, Vasco 6000, and Zubora 67H emulsions. Also, the MWFs were tested for their rheological properties and wettability. The tribometer results validated the same COF trend as that in the actual metal-cutting experiments, particularly at 0.5 and 1 GPa in dry conditions. Moreover, Zubora 67H emulsion is proven to be the optimal choice due to it reducing the COF between the rubbing contacts by up to 78%. Furthermore, it showed the lowest contact angle and viscosity index, revealing its ability to easily penetrate, especially at higher temperatures, within the secondary cutting zone.

Funder

German Research Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3