Optimization of the Rheological Properties and Tribological Performance of SAE 5w-30 Base Oil with Added MWCNTs

Author:

Kamel Bahaa M.ORCID,Tirth VineetORCID,Algahtani Ali,Shiba Mohamed S.,Mobasher Ahmed,Hashish Hassan Abu,Dabees Sameh

Abstract

The augmentation of lubricant oil properties is key to protecting engines, bearings, and machine parts from damage due to friction and wear and minimizing energy lost in countering friction. The tribological and rheological properties of the lubricants are of utmost importance to prevent wear under unembellished conditions. The marginal addition of particulate and filamentous nanofillers enhances these properties, making the lubricant oil stable under severe operating conditions. This research explores the improvement in SAE 5w-30 base oil performance after the addition of multiwalled carbon nanotubes (MWCNTs) in six marginal compositions, namely, Base, 0.02, 0.04, 0.06, 0.08, and 0.10 weight percentage. The effect of the addition of MWCNTs on flash and pour points, thermal conductivity, kinematic viscosity, friction coefficients, and wear are investigated and reported. X-ray diffraction and transmission electron microscopy are used to characterize the MWCNTs. The purity, crystallinity, size, shape, and orientation of the MWCNTs are confirmed by XRD and TEM characterization. Pour points and flash points increase by adding MWCNTs but inconsistency is observed after the 0.06 wt.% composition. The thermal conductivity and kinematic viscosity increase significantly and consistently. The friction coefficient and wear scar diameter reduce to 0.06 wt.% MWCNTs and then the trend is reversed due to agglomeration and inhomogeneity. A composition of 0.06 wt.% is identified as the optimum considering all the investigated properties. This composition ensures the stability of the tribo-film and hydrodynamic lubrication.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3