Research on an Improved Auxiliary Classifier Wasserstein Generative Adversarial Network with Gradient Penalty Fault Diagnosis Method for Tilting Pad Bearing of Rotating Equipment

Author:

Zhou Chunlei12ORCID,Wang Qingfeng12ORCID,Xiao Yang12,Xiao Wang3,Shu Yue4

Affiliation:

1. School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

2. Beijing Key Laboratory of Health Monitoring and Self-Recovery of High-End Machinery Equipment, Beijing University of Chemical Technology, Beijing 100029, China

3. Western Branch of National Pipe Network Group United Pipeline Company Ltd., Urumqi 830013, China

4. Hefei General Machinery Research Institute Company Ltd., Hefei 230031, China

Abstract

The research on fault diagnosis methods based on generative adversarial networks has achieved fruitful results, but most of the research objects are rolling bearings or gears, and the model test data are almost all derived from laboratory bench test data. In the industrial Internet environment, equipment-fault diagnosis is faced with the characteristics of large amounts of data, unbalanced data samples, and inconsistent data file lengths. Moreover, there are few research results on the fault diagnosis of rotor systems composed of shafts, impellers or blades, couplings, and tilting pad bearings. There are still shortcomings in the operational risk evaluation of rotor systems. In order to ensure the reliability and safety of rotor systems, an Improved Auxiliary Classifier Wasserstein Generative Adversarial Network with Gradient Penalty (IACWGAN-GP) model is constructed, a fault diagnosis method based on IACWGAN-GP for tilting pad bearings is proposed, and an intelligent fault diagnosis system platform for equipment in an industrial Internet environment is built. The verification results of engineering case data show that the fault diagnosis model based on IACWGAN-GP can adapt to any length of sequential data files, and the automatic identification accuracy of early faults in tilting pad bearings reaches 98.7%.

Funder

PipeChina

State Key Laboratory of Compressor Technology

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3