Abstract
Surface Force Balance (SFB) experiments have been performed in a dry atmosphere and across an ionic liquid, combining the analysis of surface interactions and deformations, and illustrate that the mechanical deformations of the surfaces have important consequences for the force measurements. First, we find that the variation of the contact radius with the force across the ionic liquid is well described only by the Derjaguin–Muller–Toporov (DMT) model, in contrast with the usual consideration that SFB experiments are always in the Johnson–Kendall–Roberts (JKR) regime. Secondly, we observe that mica does not only bend but can also experience a compression, of order 1nm with 7μm mica. We present a modified procedure to calibrate the mica thickness in a dry atmosphere, and we show that the structural forces measured across the ionic liquid cannot be described by the usual exponentially decaying harmonic oscillation, but should be considered as a convolution of the surface forces across the liquid and the mechanical response of the confining solids. The measured structural force profile is fitted with a heuristic formulation supposing that mica compression is dominant over liquid compression, and a scaling criterion is proposed to distinguish situations where the solid deformation is negligible or dominant.
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献