Braking Friction Coefficient Prediction Using PSO–GRU Algorithm Based on Braking Dynamometer Testing

Author:

Wang Shuwen1ORCID,Yu Yang1,Liu Shuangxia1,Barton David2

Affiliation:

1. College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2. School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK

Abstract

The coefficients of friction (COFs) is one of the most important parameters used to evaluate the braking performance of a friction brake. Many indicators that affect the safety and comfort of automobiles are associated with brake COFs. The manufacturers of friction brakes and their components are required to spend huge amounts of time and money to carry out experimental tests to ensure the COFs of a newly developed braking system meet the required standards. In order to save time and costs for the development of new friction brake applications, the GRU (Gate Recurrent Unit) algorithm optimized by the improved PSO (particle swarm optimization) global optimization method is employed in this work to predict brake COFs based on existing experimental data obtained from friction braking dynamometer tests. Compared with the LSTM (Long Short-Term Memory) method, the GRU algorithm optimized by PSO avoids the accuracy reduction problem caused by gradient descent in the training process and hence reduces the prediction error and computational cost. The combined PSO–GRU algorithm increases the coefficient of determination (R2) of the prediction by 4.7%, reduces the MAE (mean absolute error) by 14.3%, and increases the prediction speed by 40.1% compared with the standalone GRU method. The prediction method based on machine learning proposed in this study can not only be applied to the prediction of automobile braking COFs but also for other frictional system problems, such as the prediction of braking noise and the friction of various bearing transmission components.

Funder

Science and Technology Committee of Shanghai Municipality

Natural Science Foundation of Shanghai

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3