Study on Distribution of Lubricating Oil Film in Contact Micro-Zone of Full Ceramic Ball Bearings and the Influence Mechanism on Service Performance

Author:

Yao Jinmei,Wu Yuhou,Yang Jiaxing,Sun Jian,Xia Zhongxian,Tian Junxing,Bao Zhigang,Gao Longfei

Abstract

Compared with metal ball bearings, full ceramic ball bearings have more outstanding service performance under extreme working conditions. In order to reveal the lubrication mechanism and improve the operation performance and service life of full ceramic ball bearings, in this paper, the friction, vibration, and temperature rise characteristics of 6208 silicon nitride full ceramic deep groove ball bearing, under the condition of oil lubrication, are studied experimentally. Based on the test results, and through theoretical calculation and simulation analysis, the distribution of the lubricating oil film in bearing contact micro-zone under different working conditions was simulated. After that, the surface of contact micro-zone of full ceramic ball bearing was analyzed. It was found that there is an optimal oil supply for full ceramic ball bearing oil lubrication in service. Under the optimal oil supply lubrication, full film lubrication can be achieved, and the bearing exhibits the best characteristics of friction, vibration, and temperature rise. Compared with the load, the rotational speed of the bearing has a decisive influence on the optimal oil supply. When the rotational speed and load are constant, the minimum oil film thickness and oil film pressure in the contact area of the rolling body decrease with the increase of angle ψ from the minimum stress point of the rolling body. Under the action of high contact stress, thin oil film will be formed in the bearing outer ring raceway. In the field of full ceramic ball bearings, the research content of this paper is innovative. The research results of this paper have an important guiding significance for revealing the oil lubrication mechanism of full ceramic ball bearing and enriching its lubrication theory and methods.

Funder

Department of Science and Technology of Liaoning Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3