Friction and Wear Pattern of Silica-Reinforced Styrene-Butadiene Rubber (SBR) in Sliding Contact with a Blade Indenter

Author:

Setiyana Budi,Khafidh MuhammadORCID,Tauviqirrahman Mohammad,Ismail Rifky,Jamari ORCID,Schipper Dirk JanORCID

Abstract

This study investigated the friction and wear pattern of silica-reinforced Styrene-Butadiene Rubber (SBR) in sliding friction with a steel blade indenter. The experiments were conducted using a pin-on-disc tribometer at various applied loads and examined under dry and wet contact conditions. Analysis was focused on investigating the coefficient of friction and length of wear pattern spacing. Related to coefficient of friction identification, the abrasion theory was applied here. In addition, the stick-slip theory to identify the wear pattern spacing was also applied. Results of the experiments show that the overall coefficient of friction (COF) decreases along with the increasing applied loads. The COF in wet conditions is much lower at the beginning of sliding time than the COF in dry conditions. The wear pattern spacing increases with increasing loads. However, it seems that there is no significant difference in pattern spacing between the dry and wet contact condition. In general, the experimental results agree qualitatively with the analytical results.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3