Deep Machine Learning of MobileNet, Efficient, and Inception Models

Author:

Rybczak Monika1ORCID,Kozakiewicz Krystian1

Affiliation:

1. Faculty of Marine Electrical Engineering, Gdynia Maritime University, Morska 83, 81-225 Gdynia, Poland

Abstract

Today, specific convolution neural network (CNN) models assigned to specific tasks are often used. In this article, the authors explored three models: MobileNet, EfficientNetB0, and InceptionV3 combined. The authors were interested in investigating how quickly an artificial intelligence model can be taught with limited computer resources. Three types of training bases were investigated, starting with a simple base verifying five colours, then recognizing two different orthogonal elements, followed by more complex images from different families. This research aimed to demonstrate the capabilities of the models based on training base parameters such as the number of images and epoch types. Architectures proposed by the authors in these cases were chosen based on simulation studies conducted on a virtual machine with limited hardware parameters. The proposals present the advantages and disadvantages of the different models based on the TensorFlow and Keras libraries in the Jupiter environment based on the Python programming language. An artificial intelligence model with a combination of MobileNet, proposed by Siemens, and Efficient and Inception, selected by the authors, allows for further work to be conducted on image classification, but with limited computer resources for industrial implementation on a programmable logical controller (PLC). The study showed a 90% success rate, with a learning time of 180 s.

Funder

Marine Electrical Engineering Faculty, Gdynia Maritime University, Poland

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3