Improved Decentralized Fractional-Order Control of Higher-Order Systems Using Modified Flower Pollination Optimization

Author:

Hamza Mukhtar Fatihu1ORCID

Affiliation:

1. Department of Mechanical Engineering, College of Engineering in Alkharj, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia

Abstract

Due to increased complexity and interactions between various subsystems, higher-order MIMO systems present difficulties in terms of stability and control performance. This study effort provides a novel, all-encompassing method for creating a decentralized fractional-order control technique for higher-order systems. Given the greater number of variables that needed to be optimized for fractional order control in higher-order, multi-input, multi-output systems, the modified flower pollination optimization algorithm (MFPOA) optimization technique was chosen due to its rapid convergence speed and minimal computational effort. The goal of the design is to improve control performance. Maximum overshoot (Mp), rising time (tr), and settling time (ts) are the performance factors taken into consideration. The MFPOA approach is used to improve the settings of the proposed decentralized fractional-order proportional-integral-derivative (FOPID) controller. By exploring the parameter space and converging on the best controller settings, the MFPOA examines the parameter space and satisfies the imposed constraints by maintaining system stability. To evaluate the suggested approach, simulation studies on two systems are carried out. The results show that by decreasing the loop interactions between subsystems with improved stability, the decentralized control with the MFPOA-based FOPID controller provides better control performance.

Funder

Prince Sattam bin Abdulaziz University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3