Multi-Depth Computer-Generated Hologram Based on Stochastic Gradient Descent Algorithm with Weighted Complex Loss Function and Masked Diffraction

Author:

Quan Jiale1,Yan Binbin1,Sang Xinzhu1,Zhong Chongli1ORCID,Li Hui2,Qin Xiujuan1,Xiao Rui1,Sun Zhi1,Dong Yu1,Zhang Huming1

Affiliation:

1. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China

Abstract

In this paper, we propose a method to generate multi-depth phase-only holograms using stochastic gradient descent (SGD) algorithm with weighted complex loss function and masked multi-layer diffraction. The 3D scene can be represented by a combination of layers in different depths. In the wave propagation procedure of multiple layers in different depths, the complex amplitude of layers in different depths will gradually diffuse and produce occlusion at another layer. To solve this occlusion problem, a mask is used in the process of layers diffracting. Whether it is forward wave propagation or backward wave propagation of layers, the mask can reduce the occlusion problem between different layers. Otherwise, weighted complex loss function is implemented in the gradient descent optimization process, which analyzes the real part, the imaginary part, and the amplitude part of the focus region between the reconstructed images of the hologram and the target images. The weight parameter is used to adjust the ratio of the amplitude loss of the focus region in the whole loss function. The weight amplitude loss part in weighted complex loss function can decrease the interference of the focus region from the defocus region. The simulations and experiments have validated the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Beijing Municipal Science & Technology Commission Administrative Commission of Zhongguancun Science Park

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3