Industrial Environment Multi-Sensor Dataset for Vehicle Indoor Tracking with Wi-Fi, Inertial and Odometry Data

Author:

Silva  Ivo1ORCID,Pendão Cristiano12ORCID,Torres-Sospedra Joaquín1ORCID,Moreira Adriano1ORCID

Affiliation:

1. Centro ALGORITMI, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal

2. Department of Engineering, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal

Abstract

This paper describes a dataset collected in an industrial setting using a mobile unit resembling an industrial vehicle equipped with several sensors. Wi-Fi interfaces collect signals from available Access Points (APs), while motion sensors collect data regarding the mobile unit’s movement (orientation and displacement). The distinctive features of this dataset include synchronous data collection from multiple sensors, such as Wi-Fi data acquired from multiple interfaces (including a radio map), orientation provided by two low-cost Inertial Measurement Unit (IMU) sensors, and displacement (travelled distance) measured by an absolute encoder attached to the mobile unit’s wheel. Accurate ground-truth information was determined using a computer vision approach that recorded timestamps as the mobile unit passed through reference locations. We assessed the quality of the proposed dataset by applying baseline methods for dead reckoning and Wi-Fi fingerprinting. The average positioning error for simple dead reckoning, without using any other absolute positioning technique, is 8.25 m and 11.66 m for IMU1 and IMU2, respectively. The average positioning error for simple Wi-Fi fingerprinting is 2.19 m when combining the RSSI information from five Wi-Fi interfaces. This dataset contributes to the fields of Industry 4.0 and mobile sensing, providing researchers with a resource to develop, test, and evaluate indoor tracking solutions for industrial vehicles.

Funder

FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3