Imaging of Indocyanine Green-Human Serum Albumin (ICG-HSA) Complex in Secreted Protein Acidic and Rich in Cysteine (SPARC)-Expressing Glioblastoma

Author:

Jang Hye JungORCID,Song Myung Geun,Park Cho Rong,Youn Hyewon,Lee Yun-SangORCID,Cheon Gi JeongORCID,Kang Keon WookORCID

Abstract

Glioblastoma is the most common and fatal primary glioma and has a severe prognosis. It is a challenge for neurosurgeons to remove brain tumor tissues completely by resection. Meanwhile, fluorescence-guided surgery (FGS) is a technique used in glioma surgery to enhance the visualization of tumor edges to clarify the extent of tumor resection. Indocyanine green (ICG) is the only FDA-approved NIR fluorescent agent. It non-covalently binds to human serum albumin (HSA). Secreted protein acidic and rich in cysteine (SPARC) is an extracellular glycoprotein expressed in gliomas and binds to albumin, suggesting that it plays an important role in tumor uptake of the ICG-HSA complex. Here we demonstrate the binding properties of HSA or SPARC to ICG using surface plasmon resonance and saturation binding assay. According to in vitro and in vivo studies, the results showed that the uptake of ICG-HSA complex was higher in SPARC-expressing glioblastoma cell line and tumor region compared with the uptake of free ICG. Here, we visualized the SPARC-dependent uptake of ICG and ICG-HSA complex in U87MG. Our results demonstrated that the ICG-HSA complex is likely to be used as an efficient imaging agent targeting SPARC-expressing tumors, especially glioblastoma.

Funder

Radiation Technology R&D program through the National Research Foundation of Korea, funded by the Ministry of Science and ICT

framework of international cooperation program managed by the National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3