Yeast Lipid Produced through Glycerol Conversions and Its Use for Enzymatic Synthesis of Amino Acid-Based Biosurfactants

Author:

Karayannis DimitrisORCID,Papanikolaou Seraphim,Vatistas Christos,Paris CédricORCID,Chevalot Isabelle

Abstract

The aim of the present work was to obtain microbial lipids (single-cell oils and SCOs) from oleaginous yeast cultivated on biodiesel-derived glycerol and subsequently proceed to the enzymatic synthesis of high-value biosurfactant-type molecules in an aqueous medium, with SCOs implicated as acyl donors (ADs). Indeed, the initial screening of five non-conventional oleaginous yeasts revealed that the most important lipid producer was the microorganism Cryptococcus curvatus ATCC 20509. SCO production was optimised according to the nature of the nitrogen source and the initial concentration of glycerol (Glyc0) employed in the medium. Lipids up to 50% w/w in dry cell weight (DCW) (SCOmax = 6.1 g/L) occurred at Glyc0 ≈ 70 g/L (C/N ≈ 80 moles/moles). Thereafter, lipids were recovered and were subsequently used as ADs in the N-acylation reaction catalysed by aminoacylases produced from Streptomyces ambofaciens ATCC 23877 under aqueous conditions, while Candida antarctica lipase B (CALB) was used as a reference enzyme. Aminoacylases revealed excellent activity towards the synthesis of acyl-lysine only when free fatty acids (FAs) were used as the AD, and the rare regioselectivity in the α-amino group, which has a great impact on the preservation of the functional side chains of any amino acids or peptides. Aminoacylases presented higher α-oleoyl-lysine productivity and final titer (8.3 g/L) with hydrolysed SCO than with hydrolysed vegetable oil. The substrate specificity of both enzymes towards the three main FAs found in SCO was studied, and a new parameter was defined, viz., Specificity factor (Sf), which expresses the relative substrate specificity of an enzyme towards a FA present in a FA mixture. The Sf value of aminoacylases was the highest with palmitic acid in all cases tested, ranging from 2.0 to 3.0, while that of CALB was with linoleic acid (0.9–1.5). To the best of our knowledge, this is the first time that a microbial oil has been successfully used as AD for biosurfactant synthesis. This bio-refinery approach illustrates the concept of a state-of-the-art combination of enzyme and microbial technology to produce high-value biosurfactants through environmentally friendly and economically sound processes.

Funder

the “Lorraine Université d’Excellence

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference49 articles.

1. Surfactants in the Environment;Arch. Hig. Rada. Toksikol.,2010

2. Amino acid-based surfactants;Infante;C. R. Chim.,2004

3. Fortune Business Insights (2021). Biosurfactants Market Size, Share & COVID-19 Impact Analysis, by Type (Glycolipids, Lipopeptides, Phospholipids, Polymeric, and Others) by Application (Household Cleaners, Industrial and Institutional Cleaners, Food Processing, Oil & Petroleum, Personal Care, Agrochemicals, and Others), and Regional Forecast, (2021–2028), Fortune Business Insights. Available online: https://www.fortunebusinessinsights.com/biosurfactants-market-102761.

4. Response surface methodological study on lipase-catalyzed synthesis of amino acid surfactants;Soo;Process Biochem.,2004

5. A comparative study on the surface activity and micellar behavior of some N-acylamino acid based surfactants;George;Ind. J. Chem.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3