Transcription Factor ERF194 Modulates the Stress-Related Physiology to Enhance Drought Tolerance of Poplar

Author:

Huan Xuhui,Wang Xingqi,Zou Shengqiang,Zhao Kai,Han Youzhi,Wang ShengjiORCID

Abstract

Drought is one of the main environmental factors limiting plant growth and development. The AP2/ERF transcription factor (TF) ERF194 play key roles in poplar growth and drought-stress tolerance. However, the physiological mechanism remains to be explored. In this study, the ERF194-overexpression (OX), suppressed-expression (RNA interference, RNAi), and non-transgenic (WT) poplar clone 717 were used to study the physiology role of ERF194 transcription factor in poplar growth and drought tolerance. Morphological and physiological methods were used to systematically analyze the growth status, antioxidant enzyme activity, malondialdehyde (MDA), soluble sugars, starch, and non-structural carbohydrate (NSC) contents of poplar. Results showed that, compared with WT, OX plants had decrease in plant height, internode length, and leaf area and increased number of fine roots under drought stress. In addition, OX had higher water potential, activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), contents of chlorophyll, soluble sugar, starch, and NSC, implying that ERF194 positively regulates drought tolerance in poplar. The growth status of RNAi was similar to those of WT, but the relative water content and CAT activity of RNAi were lower than those of WT under drought treatment. Based on the transcriptome data, functional annotation and expression pattern analysis of differentially expressed genes were performed and further confirmed by RT-qPCR analysis. Gene ontology (GO) enrichment and gene expression pattern analysis indicated that overexpression of ERF194 upregulated the expression of oxidoreductases and metabolism-related genes such as POD and SOD. Detection of cis-acting elements in the promoters suggested that ERF194 may bind to these genes through MeJA-responsive elements, ABA-responsive elements, or elements involved in defense and stress responses. The above results show that ERF194 improved tolerance to drought stress in poplar by regulating its growth and physiological factors. This study provides a new idea for the role of ERF194 transcription factor in plant growth and drought-stress response.

Funder

the Opening Project of State Key Laboratory of Tree Genetics and Breeding

the Natural Science Foundation of Shanxi Province

the Biobreeding Project of Shanxi Agricultural University

the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference56 articles.

1. Effects of Drought Stress on Growth and Development of Wheat Seedlings;Duan;Int. J. Agric. Biol.,2017

2. Gene networks involved in drought stress response and tolerance;Shinozaki;J. Exp. Bot.,2007

3. The impact of climate change on the external cost of pesticide applications in US agriculture;Koleva;Int. J. Agric. Sustain.,2009

4. Plant Responses to Drought, Acclimation, and Stress Tolerance;Yordanov;Photosynthetica,2000

5. Morphological, physiological and biochemical responses of plants to drought stress;Anjum;Afr. J. Agric. Res.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3