Effect of Hole Arrangement on Failure Mechanism of Multiple-Hole Fiber Metal Laminate under On-Axis and Off-Axis Loading

Author:

Zhang JipengORCID,Wang Yue,Yang Wen,Zhao Yuan

Abstract

Mechanical joints are commonly required in structures made of fiber metal laminate (FML), which pose a threat due to multi-site stress concentrations at rivet or bolt holes. Thus, for a reasonably designed FML joint, it is essential to characterize the failure mechanism of multiple-hole FML; however, little information about this has been found in open literature. In the present work, influences of hole arrangement and loading strategy (on-axis or off-axis) on the failure mechanism of multiple-hole FML were investigated, by performing finite element analyses and energy dissipation analyses with elastoplastic progressive damage models that took curing stress into account. Six types of specimens with holes arranged in parallel and staggered forms were designed, whose geometrical parameters were in strict accordance with those specified for composites joints. It indicated that the stress distribution, gross/net notched strength, critical fracture path, and damage evaluation process were only slightly influenced by the hole number and hole arrangement. On the other hand, they were strongly influenced by the loading strategy, due to the transition of failure domination. Results presented here can provide evidence for introducing design regulations of composite joints into the more hybrid FML, and for reasonably determining its multiple-hole strength merely based on the sing-hole specimen.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3