Crystal Analyzer Based Multispectral Microtomography Using CCD-Sensor

Author:

Grigoriev Maxim1ORCID,Zolotov Denis2ORCID,Ingacheva Anastasia34,Buzmakov Alexey2ORCID,Dyachkova Irina2ORCID,Asadchikov Victor2,Chukalina Marina34

Affiliation:

1. Institute of Microelectronics Technology and High Purity Materials RAS, Osipyan Str., 6, 142432 Chernogolovka, Russia

2. FSRC “Crystallography and Photonics” RAS, Leninskiy Prospekt 59, 119333 Moscow, Russia

3. Smart Engines Service LLC, 60-Letiya Oktyabrya Avenue, 9, 117312 Moscow, Russia

4. Institute for Information Transmission Problems (Kharkevich Institute) RAS, Bolshoy Karetny Lane, 19, 127051 Moscow, Russia

Abstract

To solve the problems of spectral tomography, an X-ray optical scheme was proposed, using a crystal analyzer in Laue geometry between the sample and the detector, which allowed for the selection of predetermined pairs of wavelengths from the incident polychromatic radiation to obtain projection images. On a laboratory X-ray microtomography setup, an experiment was carried out for the first time where a mixture of micro-granules of sodium chloride NaCl, silver behenate AgC22H43O2, and lithium niobate LiNbO3 was used as a test sample to identify their spatial arrangement. The elements were chosen based on the presence of absorption edges in two of the elements in the energy range of the polychromatic spectrum of the probing radiation. The method of projection distortion correction was used to preprocess the obtained projections. To interpret the obtained reconstruction results, the segmentation method based on the analysis of joint histograms was used. This allowed us to identify each of the three substances. To compare the results obtained, additional “reference” tomographic measurements were performed: one in polychromatic and two in monochromatic (MoKα-, MoKβ-lines) modes. It took three times less time for the tomographic experiment with the crystal analyzer, while the reconstruction accuracy was comparable to that of the “reference” tomography.

Funder

FSRC

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3