A Novel Self-Healing Strategy for Distribution Network with Distributed Generators Considering Uncertain Power-Quality Constraints

Author:

Ke Song,Lin Tao,Chen Rusi,Du Hui,Li Shuitian,Xu Xialing

Abstract

Self-healing of smart distribution networks with distributed generators, which are usually operated as independent islands after fault, can improve power-supply reliability. As a hot research topic, a self-healing scheme is usually treated as the output of a nonlinear optimizuoation model. However, existing strategies have two main shortcomings. The first, high-optimization dimension, results in low-optimization efficiency. The second, the effects of power-quality issues, which are more serious on islands and may further threaten the safe operation of islands, is usually neglected. To quickly obtain a reliable self-healing scheme, a novel strategy is proposed. As the first step, the distribution network after a fault occurrence can be divided into several trouble-free subnets via the connectivity analysis; each subnet is called an initial island. Further, for each initial island, a two-step optimization model of self-healing, which consists of load-shedding optimization and network reconfiguration optimization, is proposed to obtain the self-healing strategy with lower searching space as well as higher solving efficiency. In detail, in load-shedding optimization, by means of heuristic differential evolution algorithm, larger total recovery capacity is achieved by considering the droop characteristic of distributed generators (DGs) within the permissible change in frequency. In network-reconfiguration optimization, based on the improved hybrid particle swarm optimization algorithm, a comprehensive set of power-quality constraints, including constraint of change in frequency, uncertain constraints of node voltage total harmonic distortion (THD), and negative sequence components of DGs, is developed to guarantee the reliability of each island. To evaluate whether the constraints are satisfied during the optimization procedure, an improved flexible power-flow algorithm is developed to calculate the power flow of each island under change in frequency. Further, 2m+1-point estimate method is employed for uncertainty analyses of the distributions of harmonic and negative sequence components caused by the uncertainty of corresponding sources. Finally, via a 94-node practical distribution network, the effectiveness and advantages of the proposed strategy in safety, recovery capacity, and optimization efficiency are verified.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3