Recommending Cryptocurrency Trading Points with Deep Reinforcement Learning Approach

Author:

Sattarov OtabekORCID,Muminov AzamjonORCID,Lee Cheol Won,Kang Hyun Kyu,Oh Ryumduck,Ahn Junho,Oh Hyung Jun,Jeon Heung Seok

Abstract

The net profit of investors can rapidly increase if they correctly decide to take one of these three actions: buying, selling, or holding the stocks. The right action is related to massive stock market measurements. Therefore, defining the right action requires specific knowledge from investors. The economy scientists, following their research, have suggested several strategies and indicating factors that serve to find the best option for trading in a stock market. However, several investors’ capital decreased when they tried to trade the basis of the recommendation of these strategies. That means the stock market needs more satisfactory research, which can give more guarantee of success for investors. To address this challenge, we tried to apply one of the machine learning algorithms, which is called deep reinforcement learning (DRL) on the stock market. As a result, we developed an application that observes historical price movements and takes action on real-time prices. We tested our proposal algorithm with three—Bitcoin (BTC), Litecoin (LTC), and Ethereum (ETH)—crypto coins’ historical data. The experiment on Bitcoin via DRL application shows that the investor got 14.4% net profits within one month. Similarly, tests on Litecoin and Ethereum also finished with 74% and 41% profit, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Portfolio construction using explainable reinforcement learning;Expert Systems;2024-07-02

2. Trading Gold, GBPUSD and EURUSD with Deep Reinforcement Learning Agents;2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI);2024-06-27

3. A dynamic price jump exit and re-entry strategy for intraday trading algorithms based on market volatility;Expert Systems with Applications;2024-06

4. A2C Reinforcement Learning for Cryptocurrency Trading and Asset Management;2024 IEEE International Conference on Blockchain and Cryptocurrency (ICBC);2024-05-27

5. Artificial intelligence techniques in financial trading: A systematic literature review;Journal of King Saud University - Computer and Information Sciences;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3