Phase Space Reconstruction from a Biological Time Series: A Photoplethysmographic Signal Case Study

Author:

de Pedro-Carracedo JavierORCID,Fuentes-Jimenez DavidORCID,Ugena Ana MaríaORCID,Gonzalez-Marcos Ana PilarORCID

Abstract

In the analysis of biological time series, the state space is comprised of a framework for the study of systems with presumably deterministic and stationary properties. However, a physiological experiment typically captures an observable that characterizes the temporal response of the physiological system under study; the dynamic variables that make up the state of the system at any time are not available. Only from the acquired observations should state vectors be reconstructed to emulate the different states of the underlying system. This is what is known as the reconstruction of the state space, called the phase space in real-world signals, in many cases satisfactorily resolved using the method of delays. Each state vector consists of m components, extracted from successive observations delayed a time τ . The morphology of the geometric structure described by the state vectors, as well as their properties depends on the chosen parameters τ and m. The real dynamics of the system under study is subject to the correct determination of the parameters τ and m. Only in this way can be deduced features have true physical meaning, revealing aspects that reliably identify the dynamic complexity of the physiological system. The biological signal presented in this work, as a case study, is the photoplethysmographic (PPG) signal. We find that m is five for all the subjects analyzed and that τ depends on the time interval in which it is evaluated. The Hénon map and the Lorenz flow are used to facilitate a more intuitive understanding of the applied techniques.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. CHAOTIC PULSATION IN HUMAN CAPILLARY VESSELS AND ITS DEPENDENCE ON MENTAL AND PHYSICAL CONDITIONS

2. Nonlinear Dynamics and Chaos;Strogatz,1994

3. Chaotic Dynamics: An Introduction;Baker,1996

4. Chaos in Dynamical Systems;Ott,2002

5. An Introduction to Chaotic Dynamical Systems;Devaney,2018

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3